Sharp Global Well-posedness for a Higher Order Schrödinger Equation
نویسندگان
چکیده
Using the theory of almost conserved energies and the “I-method” developed by Colliander, Keel, Staffilani, Takaoka and Tao, we prove that the initial value problem for a higher order Schrödinger equation is globally wellposed in Sobolev spaces of order s > 1/4. This result is sharp.
منابع مشابه
Global Well-posedness of the Cauchy Problem of a Higher-order Schrödinger Equation
We apply the I-method to prove that the Cauchy problem of a higher-order Schrödinger equation is globally well-posed in the Sobolev space Hs(R) with s > 6/7.
متن کاملAlmost Morawetz estimates and global well-posedness for the defocusing L-critical nonlinear Schrödinger equation in higher dimensions
In this paper, we consider the global well-posedness of the defocusing, L2 critical nonlinear Schrödinger equation in dimensions n ≥ 3. Using the I-method, we show the problem is globally well-posed in n = 3 when s > 25 , and when n ≥ 4, for s > n−2 n . We combine energy increments for the I-method, interaction Morawetz estimates, and almost Morawetz estimates to prove the result.
متن کاملGlobal Well-posedness for the fourth order nonlinear Schrödinger equations with small rough data in high demension
For n > 2, we establish the smooth effects for the solutions of the linear fourth order Shrödinger equation in anisotropic Lebesgue spaces with k-decomposition. Using these estimates, we study the Cauchy problem for the fourth order nonlinear Schrödinger equations with three order derivatives and obtain the global well posedness for this problem with small data in modulation space M 9/2 2,1 (R ).
متن کاملGlobal well-posedness for the Schrödinger equation coupled to a nonlinear oscillator
The Schrödinger equation with the nonlinearity concentrated at a single point proves to be an interesting and important model for the analysis of long-time behavior of solutions, such as the asymptotic stability of solitary waves and properties of weak global attractors. In this note, we prove global well-posedness of this system in the energy space H1.
متن کاملGLOBAL WELL-POSEDNESS AND SCATTERING FOR THE DEFOCUSING ENERGY-CRITICAL NONLINEAR SCHRÖDINGER EQUATION IN R1+4 By E. RYCKMAN and M. VISAN
We obtain global well-posedness, scattering, uniform regularity, and global L6 t,x spacetime bounds for energy-space solutions to the defocusing energy-critical nonlinear Schrödinger equation in R×R4. Our arguments closely follow those of Colliender, Hoel, et al., though our derivation of the frequency-localized interaction Morawetz estimate is somewhat simpler. As a consequence, our method yie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005